Enhancing mathematics education through collaborative digital material design: Lessons from a national project

Edith Lindenbauer 1 * , Eva-Maria Infanger 2, Zsolt Lavicza 2
More Detail
1 Department of Mathematics Education, University College of Education Upper Austria, Linz, AUSTRIA
2 Department for STEM Education, Linz School of Education, Johannes Kepler University Linz, Linz, AUSTRIA
* Corresponding Author
EUR J SCI MATH ED, Volume 12, Issue 2, pp. 276-296. https://doi.org/10.30935/scimath/14323
Published Online: 14 March 2024, Published: 01 April 2024
OPEN ACCESS   564 Views   283 Downloads
Download Full Text (PDF)

ABSTRACT

This article offers insights into a national-scale project aimed at developing and disseminating digital learning materials for mathematics education in Austrian lower secondary schools. The design-phase and context of the project outline the noteworthy aspect of this project, namely the close collaboration of a diverse group of experts, including technology-experienced educators, GeoGebra developers, proficient GeoGebra users, and researchers specializing in technology’s role in mathematics education. This approach reveals the various needs and perspectives of all stakeholders for the designing process. To meet these needs the project design is utilizing three different research-related ideas, the didactic tetrahedron, the instrumental approach, and the didactical functionalities provided by digital technologies. We will present the resulting and constantly readjusted workflow and how such collaborative efforts ensure the quality of materials from different perspectives, aligning with best practices in technology integration in mathematics education. The comparison of five carefully selected materials for different learning scenarios brings out various possible technology-added values that can be achieved through collaboration. Selected qualitative methods such as thematic analysis of learning diaries, evaluation of a qualitative questionnaire and analyzing notes from the project team leader during the ongoing project let us extract diverse lessons learned in form of opportunities and drawbacks (e.g., discussions with experts, missing knowledge about GeoGebra). This project exemplifies potential for collaborative material design to enhance mathematics education at a wide scale, offering valuable lessons for similar endeavors in field.

CITATION

Lindenbauer, E., Infanger, E.-M., & Lavicza, Z. (2024). Enhancing mathematics education through collaborative digital material design: Lessons from a national project. European Journal of Science and Mathematics Education, 12(2), 276-296. https://doi.org/10.30935/scimath/14323

REFERENCES

  • Arcavi, A., Drijvers, P., & Stacey, K. (2017). The learning and teaching of algebra: Ideas, insights, and activities. Routledge. https://doi.org/10.4324/9781315545189
  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. Journal of Computers for Mathematical Learning, 7(3), 245-274. https://doi.org/10.1023/A:1022103903080
  • Attali, Y., & van der Kleij, F. (2017). Effects of feedback elaboration and feedback timing during computer-based practice in mathematics problem solving. Computers and Education, 110, 154-169. https://doi.org/10.1016/j.compedu.2017.03.012
  • Ball, L., & Stacey, K. (2019). Technology-supported classrooms: New opportunities for communication and development of mathematical understanding. In A. Büchter, M. Glade, R. Herold-Blasius, M. Klinger, F. Schacht, & P. Scherer (Eds.), Vielfältige Zugänge zum Mathematikunterricht [Diverse approaches to mathematics lessons] (pp. 121-129). Springer. https://doi.org/10.1007/978-3-658-24292-3_9
  • Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability, 21(1), 5-31. https://doi.org/10.1007/s11092-008-9068-5
  • Bundesministerium für Bildung, Wissenschaft und Forschung [Federal Ministry of Education, Science, and Research]. (2018). Masterplan Digitalisierung [Digitalization master plan]. https://www.bmbwf.gv.at/Ministerium/Presse/Masterplan-Digitalisierung.html
  • Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol 2: Research designs: Quantitative, qualitative, neuropsychological, and biological (pp. 57-71). American Psychological Association. https://doi.org/10.1037/13620-004
  • Büchter, A., & Leuders, T. (2009). Mathematikaufgaben selbst entwickeln: Lernen fördern–Leistung überprüfen [Develop math tasks yourself: Promote learning–check performance]. Cornelsen Scriptor.
  • Bundesministerium für Unterricht und Kunst [Federal Ministry of Education and Art]. (2021). Gesamte Rechtsvorschrift für Lehrpläne–allgemeinbildende höhere Schulen [Entire legislation for curricula–Academic secondary schools]. https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008568
  • Clark-Wilson, A., Aldon, G., Cusi, A., Goos, M., Haspekian, M., Robutti, O., & Thomas, M. (2014). The challenges of teaching mathematics with digital technologies–The evolving role of the teacher. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education (pp. 87-116). IGPME.
  • Clark-Wilson, A., Robutti, O., & Thomas, M. (2020). Teaching with technology. ZDM Mathematics Education, 52(7), 1223-1242. https://doi.org/10.1007/s11858-020-01196-0
  • Drijvers, P. (2015). Digital technology in mathematics education: Why it works (or doesn’t). In S. J. Cho (Ed.), Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 135-151). Springer. https://doi.org/10.1007/978-3-319-17187-6_8
  • Drijvers, P. (2018). Tools and taxonomies: A response to Hoyles. Research in Mathematics Education, 20(3), 229-235. https://doi.org/10.1080/14794802.2018.1522269
  • Drijvers, P., Boon, P., & Van Reeuwijk, M. (2011). Algebra and technology. In P. Drijvers (Ed.), Secondary algebra education. Revisiting topics and themes and exploring the unknown (pp. 179-202). Sense. https://doi.org/10.1007/978-94-6091-334-1_8
  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103-131. https://doi.org/10.1007/s10649-006-0400-z
  • Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66(3), 317-333. https://doi.org/10.1007/s10649-006-9072-y
  • Fyfe, E. R., & Rittle-Johnson, B. (2016). The benefits of computer-generated feedback for mathematics problem solving. Journal of Experimental Child Psychology, 147, 140-151. https://doi.org/10.1016/j.jecp.2016.03.009
  • GeoGebra. (2022). What is GeoGebra? https://www.geogebra.org/about
  • Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199-218. https://doi.org/10.1007/s10649-008-9159-8
  • Gueudet, G., Buteau, C., Mesa, V., & Misfeldt, M. (2014). Instrumental and documentational approaches: From technology use to documentation systems in university mathematics education. Research in Mathematics Education, 16(2), 139-155. https://doi.org/10.1080/14794802.2014.918349
  • Hohenwarter, M., & Jones, K. (2007). Ways of linking geometry and algebra: The case of GeoGebra. In D. Küchemann (Ed.), Proceedings of the British Society for Research into Learning Mathematics (pp. 126-131). BSRLM.
  • Hohenwarter, M., & Preiner, J. (2008). Design guidelines for dynamic mathematics worksheets. Teaching Mathematics and Computer Science, 6(2), 311-323. https://doi.org/10.5485/TMCS.2008.0182
  • Jacinto, H., & Carreira, S. (2023). Knowledge for teaching mathematical problem-solving with technology: An exploratory study of a mathematics teacher’s proficiency. European Journal of Science and Mathematics Education, 11(1), 105-122. https://doi.org/10.30935/scimath/12464
  • Kieran, C., & Yerushalmy, M. (2004). Research on the role of technological environments in algebra learning and teaching. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching and learning of algebra: The 12th ICMI study (pp. 99-152). Kluwer Academic Publishers.
  • Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge (TPACK)? Contemporary Issues in Technology and Teacher Education, 9(1), 60-70.
  • Leacock, T. L., & Nesbit, J. C. (2007). A framework for evaluating the quality of multimedia learning resources. Journal of Educational Technology & Society, 10(2), 44-59. https://api.semanticscholar.org/ CorpusID:46000532
  • Lindenbauer, E., Krenn, C., & Reichenberger, S. (2021). FLINK in Mathe – Begleitdokument für die Materialauswahl und Materialerstellung [FLINK in math accompanying document for material selection and material creation] [Unpublished script].
  • Lindenbauer, E., Lavicza, Z., & Weinhandl, R. (2022). Initiating the development of a pre-service teacher training course based on research on students’ digital resource and teaching designs. In J. Hodgen, E. Geraniou, G. Bolondi, & F. Ferretti (Eds.), Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12) (pp. 2570-2577). Free University of Bozen-Bolzano and ERME. https://hal.archives-ouvertes.fr/hal-03747531
  • Mayer, R. E. (2009). Multimedia learning. Cambridge University Press. https://doi.org/10.1017/CBO9780511811678
  • Misfeldt, M. (2011). Aspects of ICT in mathematical activity: Tool and media. Transactions on Advanced Research, 7(2), 23-28. https://doi.org/10.1515/semi.2011.054
  • Narciss, S., & Huth, K. (2006). Fostering achievement and motivation with bug-related tutoring feedback in a computer-based training for written subtraction. Learning and Instruction, 16(4), 310-322. https://doi.org/10.1016/j.learninstruc.2006.07.003
  • Pierce, R., & Stacey, K. (2010). Mapping pedagogical opportunities provided by mathematics analysis software. International Journal of Computers for Mathematical Learning, 15(1), 1-20. https://doi.org/10.1007/s10758-010-9158-6
  • Reinbacher, P. (2009). SWOT-Analyse: Der Klassiker für Fortgeschrittene [SWOT analysis: The classic for advanced users]. OrganisationsEntwicklung [Organizational Development], 3, 72-76.
  • Rocha, H. (2023). The impact of teachers’ knowledge on the connection between technology supported exploration and mathematical proof. European Journal of Science and Mathematics Education, 11(4), 635-649. https://doi.org/10.30935/scimath/13285
  • Roth, J. (2017). Computer einsetzen: Wozu, wann, wer & wie? [Using computers: why, when, who and how?] Mathematik Lehren [Teaching Mathematics], 205, 35-38.
  • Roth, J. (2019). Digitale Werkzeuge im Mathematikunterricht–Konzepte, empirische Ergebnisse und Desiderate [Digital tools in mathematics education–concepts, empirical results and desiderata]. In A. Büchter, M. Glade, R. Herold-Blasius, M. Klinger, F. Schacht, & P. Scherer (Eds.), Vielfältige Zugänge zum Mathematikunterricht [Diverse approaches to mathematics lessons] (pp. 233-248). Springer. https://doi.org/10.1007/978-3-658-24292-3_17
  • Trgalova, J., & Jahn, A. P. (2013). Quality issue in the design and use of resources by mathematics teachers. ZDM Mathematics Education, 45(7), 973-986. https://doi.org/10.1007/s11858-013-0525-3
  • Trgalova, J., Clark-Wilson, A., & Weigand, H.-G. (2018). Technology and resources in mathematics education. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven (Eds.), Developing research in mathematics education (pp. 142-161). Routledge. https://doi.org/10.4324/9781315113562-12
  • Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281-307. https://doi.org/10.1007/s10758-004-3468-5
  • Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology in Education, 10(1), 77-101. https://doi.org/10.1007/bf03172796
  • Vollrath, H.-J. (2001). Grundlagen des Mathematikunterrichts in der Sekundarstufe [Basics of mathematics teaching in secondary school]. Spektrum Akademischer Verlag [Spektrum Academic Publishing].
  • Watson, A., & Thompson, D. R. (2015). Design issues related to text-based tasks. In A. Watson, & M. Ohtani (Eds.), Task design in mathematics education (pp. 143-190). Springer. https://doi.org/10.1007/978-3-319-09629-2_5
  • Xie, K., Kim, M. K., Cheng, S.-L., & Luthy, N. C. (2017). Teacher professional development through digital content evaluation. Educational Technology Research and Development, 65(4), 1067-1103. https://doi.org/10.1007/s11423-017-9519-0