Matchstick mathematics: On Josip Slisko’s Fostering cognitive mathematics skills with matchstick puzzles
More Detail
1 University of Toronto, Toronto, ON, CANADA
* Corresponding Author
EUR J SCI MATH ED, Volume 14, Issue 2, pp. 162-170.
https://doi.org/10.30935/scimath/17899
Published: 12 February 2026
OPEN ACCESS 25 Views 19 Downloads
ABSTRACT
This review article examines the ideas and analyses put forth by Josip Slisko in his 2026 book on matchstick puzzles, which provide a basis for projecting them onto domains of study such as math cognition with implications for math education. The book is a truly significant one bridging these two domains, showing how an apparently simple puzzle form enfolds deep mathematical ideas and principles that, when fleshed out, put on display what fundamental mathematics is all about. Above all else, Slisko’s book has specific important implications for math education, which will be highlighted in this review article.
CITATION
Danesi, M. (2026). Matchstick mathematics: On Josip Slisko’s
Fostering cognitive mathematics skills with matchstick puzzles.
European Journal of Science and Mathematics Education, 14(2), 162-170.
https://doi.org/10.30935/scimath/17899
REFERENCES
- Alexander, J. (2012). On the cognitive and semiotic structure of mathematics. In M. Bockarova, M. Danesi, & R. Núñez (Eds.), Semiotic and cognitive science essays on the nature of mathematics. Lincom Europa.
- Arnheim, R. (1969). Visual thinking. University of California Press.
- Botermans, J. (2006). Matchstick puzzles. Sterling.
- Danesi, M. (2025). Alcuin’s recreational mathematics: River crossing and other classic puzzles. Oxford University Press. https://doi.org/10.1093/9780198925330.001.0001
- Danesi, M. (Ed.). (2022). Handbook of cognitive mathematics. Springer. https://doi.org/10.1007/978-3-031-03945-4
- Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford University Press.
- Dienes, Z. (1964). An experimental study of mathematics learning. Hutchison.
- Dienes, Z. (1973). The six stages in the process of learning mathematics. National Foundation for Educational Research.
- Euler, L. (1738). Specimen de constructione aequationum differentialium sine indeterminatarum separation [Example of the construction of differential equations without separation of indeterminates]. Euler Archive. https://scholarlycommons.pacific.edu/euler-works/28/
- Halmos, P. (1967). A Hilbert space problem book. Van Nostrand.
- Hovanec, H. (1978). The puzzlers’ paradise: From the Garden of Eden to the computer age. Paddington Press.
- Ji, Y., Tan, H., Chi, C., Xu, Y., Zhao, Y., Zhou, E., Lyu, H., Wang, P., Wang, Z., Zhang, S., & Zheng, X. (2025). MathSticks: A benchmark for visual symbolic compositional reasoning with matchstick puzzles. arXiv. https://doi.org/10.48550/arXiv.2510.00483
- Kant, I. (1781). Critique of pure reason (Kritik der reinen Vernunft). Johann Friedrich Hartknoch.
- Lindley, E. H. (1897). A study of puzzles with special reference to the psychology of mental adaptation. The American Journal of Psychology, 8(4), 431-493. https://doi.org/10.2307/1411772
- Loyd Jr, S. (1925). A match puzzle by Sam Loyd. Red Section. The Sunday Constitution’s Young Folks Section. The Atlanta Constitution, 57(338), Article 8.
- Mather, J. E., & Kline, L. W. (1922). The psychology of solving puzzle problems. The Pedagogical Seminary, 29(3), 269-282. https://doi.org/10.1080/08919402.1922.10534484
- Meyer, E. F., Falkner, N., Sooriamurthi, R., & Michalewicz, Z. (2014). Guide to teaching puzzle-based learning. Springer. https://doi.org/10.1007/978-1-4471-6476-0
- Montessori, M. (1909). Il metodo della pedagogia scientifica applicato all’educazione infantile nelle case dei bambini [The method of scientific pedagogy applied to early childhood education in children’s homes]. Casa Editrice S. Lapi.
- Montessori, M. (1916). L’autoeducazione nelle scuole elementari [Self-education in elementary schools]. Loescher.
- Perelman, Y. (1934). Fun with matchsticks. Priboy.
- Slisko, J. (2025). Helping puzzle-solvers find solutions missed by a famous puzzle author: Initial study on stimulated creativity. European Journal of Science and Mathematics Education, 13(4), 385-394. https://doi.org/10.30935/scimath/17509
- Slisko, J. (2026). Fostering cognitive mathematics skills with matchstick puzzles: A guide for researchers, teachers, and general readers. Springer. https://doi.org/10.1007/978-3-032-14561-1
- Tromholt, S. (1889). Streichholzspiele. Denksport und Kurzweil [Matchstick games. Brain teasers and entertainment]. Otto Spamer Verlag.
- Werner. (1865). Die Winterabende unserer Kinder II. Selbstbeschäftigung [Our children’s winter evenings II. Self-entertainment]. Cornelia. Zeitschrift fürhäusliche Erziehung, 3(1), 17-23.
- Yuritzi, A. G. Q, Slisko, J., & de Lourdes, J. R. E. (2024). Performances of Mexican basic-education teachers in solving six matchstick puzzles: Evaluating their difficulties and applicability of these puzzles in classrooms. Latin American Journal of Science Education, 11, Article 22001.