The Game as a Strategy of Learning Chemistry Among High School Students

Juan-Francisco Álvarez-Herrero 1 * , Cristina Valls-Bautista 2
More Detail
1 Departamento de Didáctica General y Didácticas Específicas, Universidad de Alicante, Alicante, SPAIN
2 Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, SPAIN
* Corresponding Author
EUR J SCI MATH ED, Volume 9, Issue 3, pp. 80-91.
OPEN ACCESS   2927 Views   1325 Downloads
Download Full Text (PDF)


This study consists of a longitudinal research using an active methodology to teach the contents of the periodic table to high school students, based on project-based learning and WebQuest. The aim of this investigation is to study the relationship between learning the periodic table and the type of strategy that students choose to achieve the learning outcomes related to it. Throughout the learning process of the periodic table’s chemical elements we could see that, after giving total freedom to 260 students (during 5 years of investigation) in the construction of instructional materials which helped them learn the periodic table, 195 of them chose to develop a game as a tool. There was no significant difference between genders, showing that students prefer to learn in a playful, motivating and exciting way since they felt a greater interest and had a better evaluation of what they had learned about, reaching a deeper and lasting understanding, hence, a significant learning. Gamification and learning-based games are acquiring a relevant role in education centers and teachers who apply these methodologies in pedagogical approaches have increased.


Álvarez-Herrero, J.-F., & Valls-Bautista, C. (2021). The Game as a Strategy of Learning Chemistry Among High School Students. European Journal of Science and Mathematics Education, 9(3), 80-91.


  • Abdullahi, H. (2014). The role of ICT in teaching science education in schools. International Letters of Social and Humanities Sciences, 19, 217-223.
  • Ainley, M., & Ainley, J. (2011a). Student engagement with science in early adolescence: The contribution of enjoyment to students’ continuing interest in learning about science. Contemporary Educational Psychology, 36(1), 4-12.
  • Ainley, M., & Ainley, J. (2011b). Cultural Perspective on the Structure of Student Interest in Science. International Journal of Science Education, 33(1), 51-71.
  • Akram, T. M., Ijaz, A., & Ikram, H. (2017). Exploring the Factors Responsible for Declining Students’ Interest in Chemistry. International Journal of Information and Education Technology, 7(2), 88.
  • Alberts, B. (2009). Restoring science to science education. Issues in Science and Technology, 25(4), 77-80.
  • Álvarez-Herrero, J.F. (2019). Las webquest como soporte y mejora del Aprendizaje Basado en Proyectos en las áreas de ciencias de educación secundaria [The webquests as support and improvement of Project Based Learning in the areas of science of secondary education]. In REDINE (ed.), Conference Proceedings EDUNOVATIC 2018 (pp. 148-151). Adaya Press.
  • Bayir, E. (2014). Developing and playing chemistry games to learn about elements, compounds, and the periodic table: Elemental Periodica, Compoundica, and Groupica. Journal of Chemical Education, 91(4), 531-535.
  • Beehr, T. A., Ivanitskaya, L., Hansen, C. P., Erofeev, D., & Gudanowski, D. M. (2001). Evaluation of 360-degree feedback ratings: Relationships with each other and with performance and selection predictors. The International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 22(7), 775-788.
  • Belanich, J., Sibley, D. E., & Orvis, K. L. (2004). Instructional characteristics and motivational features of a PC-based game (No. ARI research report -1822). Army Research Institute for the Behavioral and Social Science.
  • Demircioğlu, H., Demircioğlu, G., & Çalik, M. (2009). Investigating the effectiveness of storylines embedded within a context-based approach: the case for the Periodic Table. Chemistry Education Research and Practice, 10(3), 241-249.
  • Dodge, B. (1998). WebQuests: a strategy for scaffolding higher level learning. National Educational Computing Conference, San Diego, 22-24 June 1998.
  • Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122.
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International journal of science education, 25(6), 671-688.
  • Ebner, M., & Holzinger, A. (2007). Successful implementation of user-centered game based learning in higher education: An example from civil engineering. Computers & education, 49(3), 873-890.
  • Ejiwale, J. (2013). Barriers to successful implementation of STEM education. Journal of Education and Learning, 7(2), 63-74.
  • Fouts, J. T., & Myers, R. E. (1992). Classroom environments and middle school students’ views of science. The Journal of Educational Research, 85(6), 356-361.
  • Franco-Mariscal, A. J., & Oliva-Martínez, J. M. (2012). Dificultades de comprensión de nociones relativas a la clasificación periódica de los elementos químicos: la opinión de profesores e investigadores en educación química [Difficulties in understanding notions related to the periodic classification of chemical elements: the opinion of teachers and researchers in chemistry education]. Revista científica, 2(16), 53-71.
  • Franco-Mariscal, A. J., Oliva-Martínez, J. M., & Almoraima Gil, M. L. (2015). Students’ perceptions about the use of educational games as a tool for teaching the periodic table of elements at the high school level. Journal of Chemical Education, 92(2), 278-285.
  • Franco-Mariscal, A. J., Oliva-Martínez, J. M., Blanco-López, Á., & Espana-Ramos, E. (2016). A game-based approach to learning the idea of chemical elements and their periodic classification. Journal of Chemical Education, 93(7), 1173-1190.
  • Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415.
  • Furió, C. J. (2005). La motivación de los estudiantes y la enseñanza de la Química. Una cuestión controvertida [The motivation of the students and the teaching of Chemistry. A controversial issue]. Educación química, 17(4e), 222-227.
  • Gauchat, G., & Andrews, K. T. (2018). The cultural-cognitive mapping of scientific professions. American Sociological Review, 83(3), 567-595.
  • Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry‐based science program on middle school students’ attitudes toward science. Science education, 86(5), 693-705.
  • González-Gómez, D., Jeong, J. S., & Rodríguez, D. A. (2016). Performance and perception in the flipped learning model: an initial approach to evaluate the effectiveness of a new teaching methodology in a general science classroom. Journal of Science Education and Technology, 25(3), 450-459.
  • Henricks, T. S. (1999). Play as ascending meaning: Implications of a general model of play. In S. Reifel (ed.) Play & Culture Studies, (Vol. 2, pp. 257-278). Ablex Publishing Corporation.
  • Hofstein, A., & Mamlok-Naaman, R. (2011). High-school students’ attitudes toward and interest in learning chemistry. Educación química, 22(2), 90-102.
  • Ibáñez-González, M. J., & Mazzuca-Sobczuk, T. (2018). Active Methodologies in Chemistry. Proceedings, 2(21), 1339, 1-6.
  • Joag, S. D. (2014). An Effective Method of Introducing the Periodic Table as a Crossword Puzzle at the High School Level. Journal of Chemical Education, 91(6), 864-867.
  • Kangas, M., Koskinen, A., & Krokfors, L. (2017). A qualitative literature review of educational games in the classroom: the teacher’s pedagogical activities. Teachers and Teaching, 23(4), 451-470.
  • Longino, H. E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry (pp. 3-15). Princeton University Press.
  • Martí-Centelles, V., & Rubio-Magnieto, J. (2014). ChemMend: A card game to introduce and explore the periodic table while engaging students’ interest. Journal of Chemical Education, 91(6), 868-871.
  • Méndez, D. (2015). Estudio de las motivaciones de los estudiantes de secundaria de física y química y la influencia de las metodologías de enseñanza en su interés [Study of the motivations of secondary students of physics and chemistry and the influence of the methodologies of education in their interest]. Educación XX1, 18(2), 215-235.
  • Montejo Bernardo, J. M., & Fernández González, A. (2021). Chemical Battleship: Discovering and Learning the Periodic Table Playing a Didactic and Strategic Board Game. Journal of Chemical Education, 98(3), 907-914.
  • Montes, L. H., Ferreira, R. A., & Rodríguez, C. (2018). Explaining secondary school students’ attitudes towards chemistry in Chile. Chemistry Education Research and Practice, 19(2), 533-542.
  • Mudau, A. V. (2013). Teaching Difficulties from Interactions and Discourse in a Science Classroom. Journal of Educational and Social Research, 3(3), 113-120.
  • Najdi, S., & El Sheikh, R. (2012). Educational games: do they make a difference?. Procedia-Social and Behavioral Sciences, 47, 48-51.
  • Ogembo, J. O., Otanga, H., & Yaki, R. N. (2015). Students’ and Teachers’ Attitude and Performance in Chemistry in Secondary Schools in Kwale County, Kenya. Global Journal of Interdisciplinary Social Science, 4(3), 39-43.
  • Olakanmi, E. E. (2017). The effects of a flipped classroom model of instruction on students’ performance and attitudes towards chemistry. Journal of Science Education and Technology, 26(1), 127-137.
  • Oon, P. T., & Subramaniam, R. (2011). On the declining interest in physics among students—from the perspective of teachers. International journal of Science education, 33(5), 727-746.
  • Orlik, Y. (2002). Modern organization of classes and extraclass work in Chemistry. In Chemistry: Active Methods of Teaching and Learning, chapter 10. Iberoamerica Publicaciones.
  • Osborne, J., & Dillon J. (2008). Science education in Europe: Critical reflections (Vol. 13). The Nuffield Foundation.
  • Palmer, D. (2007). What is the best way to motivate students in science? Teaching Science: The Journal of the Australian Science Teachers Association, 53(1), 38-42.
  • Piaget, J. (1978). La formation du symbole chez l’enfant: imitation, jeu et rêve, image et representation [Symbol formation in children: imitation, play and dream, image and representation]. FeniXX.
  • Piaget, J., & Inhelder, B. (2008). The psychology of the child. Basic books.
  • Prieto, T., España, E., & Martín, C. (2012). Algunas cuestiones relevantes en la enseñanza de las ciencias desde una perspectiva Ciencia-Tecnología-Sociedad [Some relevant issues in science teaching from a Science-Technology-Society perspective]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(1), 71-77.
  • Rastegarpour, H., & Marashi, P. (2012). The effect of card games and computer games on learning of chemistry concepts. Procedia-Social and Behavioral Sciences, 31, 597-601.
  • Robinson, K. (2009). The element: How finding your passion changes everything. Viking.
  • Ryan, R., & Deci, E. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68.
  • Salta, K., & Tzougraki, C. (2004). Attitudes toward chemistry among 11th grade students in high schools in Greece. Science Education, 88, 535-547.
  • Sutherland, R., Armstrong, V., Barnes, S., Brawn, R., Breeze, N., Gall, M., Matthewman, F. O., Taylor, A., Triggs, P., Wishart, J., & John, P. (2004). Transforming teaching and learning: embedding ICT into everyday classroom practices. Journal of Computer Assisted Learning, 20(6), 413-425.
  • Tai, R. H., Liu, C. Q., Maltese, A. V., & Fan, X. (2006). Planning early for careers in science. Science, 312(5777), 1143-1144.
  • Tarhan, L., & Acar-Sesen, B. (2013). Problem based learning in acids and bases: Learning achievements and students’ beliefs, Journal of Baltic Science Education, 12(5), 565-578.
  • Valenti, S. S., Masnick, A. M., Cox, B. D., & Osman, C. J. (2016). Adolescents’ and Emerging Adults’ Implicit Attitudes about STEM Careers: “Science Is Not Creative”. Science Education International, 27(1), 40-58.
  • Vesterinen, V. M., Tolppanen, S., & Aksela, M. (2016). Toward citizenship science education: what students do to make the world a better place? International Journal of Science Education, 38(1), 30-50.
  • Vygotsky, L. S. (1978). The role of play in development. Mind in society, 5, 92-104.
  • Webb, M. E. (2005). Affordances of ICT in science learning: implications for an integrated pedagogy. International journal of science education, 27(6), 705-735.
  • Wilkerson, D. J., Manatt, R. P., Rogers, M. A., & Maughan, R. (2000). Validation of student, principal, and self-ratings in 360 feedback® for teacher evaluation. Journal of Personnel Evaluation in Education, 14(2), 179-192.
  • Wilson, S. B. & Varma-Nelson, P. (2016). Small Groups, Significant Impact: A Review of Peer-Led Team Learning Research with Implications for STEM Education Researchers and Faculty. Journal of Chemical Education, 93(10), 1686–1702.
  • Wood, J., & Donnelly-Hermosillo, D. F. (2019). Learning chemistry nomenclature: Comparing the use of an electronic game versus a study guide approach. Computers & Education, 141, 103615.
  • Zapata, J. (2016). Contexto en la enseñanza de las ciencias: análisis al contexto en la enseñanza de la física [Context in the teaching of science: analysis of the context in the teaching of physics]. Góndola, enseñanza y aprendizaje de las ciencias, 11, 193-211.
  • Zhou, Q., Ma, L., Huang, N., Liang, Q., Yue, H., & Peng, T. (2012). Integrating webquest into chemistry classroom teaching to promote students’ critical thinking. Creative Education, 3(03), 369.