Enacting knowledge in context: A classroom-based analysis of a pre-service teacher’s practice
Paula Verdugo-Hernández 1 * ,
Sofía Caviedes Barrera 2 More Detail
1 Escuela de Pedagogía en Ciencias Naturales y Exactas, Facultad de Ciencias de la Educación, Universidad de Talca, Linares, CHILE
2 Depto de Didáctica de las Matemáticas y las Ciencias Experimentales, Facultad de Educación, Universitat Autònoma de Barcelona, Barcelona, SPAIN
* Corresponding Author
EUR J SCI MATH ED, Volume 14, Issue 1, pp. 47-67.
https://doi.org/10.30935/scimath/17623
Published: 22 December 2025
OPEN ACCESS 35 Views 16 Downloads
ABSTRACT
This study explores how a pre-service mathematics teacher mobilizes specialized knowledge while teaching three geometric concepts: similarity, homothety, and Thales’ theorem. Drawing on the mathematics teachers’ specialized Knowledge model and Duval’s (1995) theory of registers of semiotic representation, the study examines how knowledge domains are enacted through multiple representations. Data were collected from three consecutive lessons during the teacher’s practicum in a socioeconomically disadvantaged and traditionally structured classroom. Findings indicate that the pre-service teacher evidenced representational fluency and procedural clarity, particularly in the use of diagrams and gestures to convey proportional reasoning. However, conceptual generalizations and formative engagement with students’ thinking remained limited. The study underscores the importance of teacher education programs in explicitly linking representational practices with epistemic goals and student reasoning, especially in socioeconomically disadvantaged contexts where systemic constraints often restrict opportunities. This research contributes to ongoing discussions on pre-service teacher development and the pedagogical demands of geometry instruction in authentic classroom settings.
CITATION
Verdugo-Hernández, P., & Caviedes Barrera, S. (2026). Enacting knowledge in context: A classroom-based analysis of a pre-service teacher’s practice.
European Journal of Science and Mathematics Education, 14(1), 47-67.
https://doi.org/10.30935/scimath/17623
REFERENCES
- Aguilera-Moraga, Y., Verdugo-Hernández, P., & Cuevas, J. (2025). Design and implementation of a task sequence for teaching homothety. Eurasia Journal of Mathematics, Science and Technology Education, 21(6), Article em2656. https://doi.org/10.29333/ejmste/16540
- Araújo, R., & Gitirana, V. (2022). Pre-service teachers’ knowledge: Analysis of teachers’ education situation based on TPACK. The Mathematics Enthusiast, 19(2), 594-631. https://doi.org/10.54870/1551-3440.1565
- Avcu, R. (2023). Pre-service middle school mathematics teachers’ personal concept definitions of special quadrilaterals. Mathematics Education Research Journal, 35(4), 743-788. https://doi.org/10.1007/s13394-022-00412-2
- Ball, D. L., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
- Bartell, T., Wager, A., Edwards, A., Battey, D., Foote, M., & Spencer, J. (2017). Toward a framework for research linking equitable teaching with the standards for mathematical practice. Journal for Research in Mathematics Education, 48(1), 7-21. https://doi.org/10.5951/jresematheduc.48.1.0007
- Basu, M., Koellner, K., Jacobs, J. K., & Seago, N. (2022). Understanding similarity through dilations of nonstandard shapes. Mathematics Teacher: Learning and Teaching PK-12, 115(9), 642-649. https://doi.org/10.5951/MTLT.2021.0284
- Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 943-908). Information Age Publishing.
- Belbase, S., Panthi, R. K., Khanal, B., Kshetree, M. P., & Acharya, B. R. (2020). Preservice secondary mathematics teachers’ actional beliefs about teaching geometric transformations with Geometer’s Sketchpad. European Journal of Mathematics and Science Education, 1(2), 91-106. https://doi.org/10.12973/ejmse.1.2.91
- Burns, N., & Grove, S. (2004). Introducción a la investigación cualitativa [Introduction to qualitative research]. Elsevier.
- Carrillo-Yáñez, J., Climent, N., Contreras, L., & Muñoz-Catalán, M. (2013). Determining specialised knowledge for mathematics teaching. In B. Ubuz, C. Hasery, & M. Mariotti (Eds.), Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (pp. 2985-2994). ERME.
- Carrillo-Yáñez, J., Climent, N., Montes, M., Contreras, L., Flores-Medrano, E., Escudero-Ávila, D., Vasco, D., Rojas, N., Flores, P., Aguilar-González, A., Ribeiro, M., & Muñoz- Catalán, M. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253. https://doi.org/10.1080/14794802.2018.1479981
- Caviedes, S., De Gamboa, G., & Badillo, E. (2023). Mathematical and didactic knowledge of preservice primary teachers about the area of 2d figures. Avances de Investigación en Educación Matemática, (24), 1-20. https://doi.org/10.35763/aiem24.4076
- Caviedes, S., De Gamboa, G., & Badillo, E. (2024). Mathematical connections involved in area measurement processes. Research in Mathematics Education, 26(2), 237-257. https://doi.org/10.1080/14794802.2024.2370333
- Caviedes, S., De Gamboa, G., Badillo, E., & Pino-Fan, L. (2025). Preservice primary teachers’ definitions of the area of 2d figures. Acta Scientiae, 27(2). https://doi.org/10.17648/acta.scientiae.8166
- Clements, D. (2003). Teaching and learning geometry. In J. Kilpatrick, W. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 151-178). National Council of Teachers of Mathematics.
- Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. Routledge. https://doi.org/10.4324/9780203029053
- Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processing. In R. Sutherland, & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 142-157). Springer. https://doi.org/10.1007/978-3-642-57771-0_10
- Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103-131. https://doi.org/10.1007/s10649-006-0400-z
- Duval, R. (2017). Understanding the mathematical way of thinking–The registers of semiotic representations. Springer. https://doi.org/10.1007/978-3-319-56910-9
- Ensor, P. (2001). From preservice mathematics teacher education to beginning teaching: A study in recontextualizing. Journal for Research in Mathematics Education, 32(3), 296-320. https://doi.org/10.2307/749829
- Espinoza-Vásquez, G., Henríquez-Rivas, C., Climent, N., Ponce, R., & Verdugo-Hernández, P. (2025). Teaching Thales’s theorem: Relations between suitable mathematical working spaces and specialised knowledge. Educational Studies in Mathematics, 118, 271-293. https://doi.org/10.1007/s10649-024-10367-9
- Filloy, E., & Lema, S. (1996). El teorema de Tales: Significado y sentido en un sistema matemático de signos [Thales’ theorem: Meaning and sense in a mathematical system of signs]. In F. Hitt (Ed.), Investigaciones en matemática educativa (pp. 55-75). Grupo Editorial Iberoamericana.
- Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Reidel.
- Gómez-Chacón, I. M., & Kuzniak, A. (2015). Spaces for geometric work: Figural, instrumental, and discursive geneses of reasoning in a technological environment. International Journal of Science and Mathematics Education, 13(3), 201-226. https://doi.org/10.1007/s10763-013-9462-4
- Henríquez Rivas, C., Ponce, R., Carrillo Yáñez, J., Climent, N., & Espinoza-Vásquez, G. (2021). Trabajo matemático de un profesor basado en tareas y ejemplos propuestos para la enseñanza [Mathematical work by a teacher based on tasks and examples proposed for teaching]. Enseñanza de las Ciencias, 39(2), 123-142. https://doi.org/10.5565/rev/ensciencias.3210
- Hill, H. C., Schilling, S., & Ball, D. L. (2004). Developing measures of teachers’ mathematics knowledge for teaching. The Elementary School Journal, 105(1), 11-30. https://doi.org/10.1086/428763
- Iori, M. (2018). Teachers’ awareness of the semio-cognitive dimension of learning mathematics. Educational studies in Mathematics, 98(1), 95-113. https://doi.org/10.1007/s10649-018-9808-5
- Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.) (2024). Proceedings of the 26th ICMI study: Advances in geometry education. International Commission on Mathematical Instruction.
- Montes, M., Aguilar, A., Carrillo, J., & Muñoz-Catalán, M. (2013). MTSK: From common and horizon knowledge to knowledge of topics and structures. In B. Ubuz, C. Haser, & M. Mariotti (Eds.), Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (pp. 3185-3194). ERME.
- Mwadzaangati, L. (2019). Comparison of geometric proof development tasks as set up in the textbook and as implemented by teachers in the classroom. Pythagoras, 40(1), 1-14. https://doi.org/10.4102/pythagoras.v40i1.458
- Mwadzaangati, L. (2024). Context and language in Malawi classroom. In T. Lowrie, A. Gutiérrez, & F. Emprin (Eds.), Proceedings of the 26th ICMI Study: Advances in Geometry Education (pp. 11-14). ICMI.
- Mwadzaangati, L., Adler, J., & Kazima, M. (2022). Mathematics mediational means and learner centredness: Insights from ‘traditional’ Malawian secondary school geometry lessons. African Journal of Research in Mathematics, Science and Technology Education, 26(1), 1-14. https://doi.org/10.1080/18117295.2022.2055910
- NCTM. (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics.
- OECD. (2023). PISA 2022 results (Volume II): Learning during – and from – disruption. OECD Publishing. https://doi.org/10.1787/a97db61c-en
- Oliveira, G., & Lima, N. S. (2018). Estratégias didáticas com tecnologias na formação continuada de professores de matemática: Uma investigação sobre homotetia [Teaching strategies with technology in the continuing education of mathematics teachers: An investigation into homothety.]. Educação Matemática Pesquisa, 20(1), 385-418. https://doi.org/10.23925/1983-3156.2018v20i1p385-418
- Prediger, S., Bikner-Ahsbahs, A. & Arzarello, F. (2008). Networking strategies and methods for connection theoretical approaches: First steps towards a conceptual framework. International Journal on Mathematics Education, 40(2), 165-178. https://doi.org/10.1007/s11858-008-0086-z
- Presmeg, N. (2006). Semiotics and the “connections” standard: Significance of semiotics for teachers of mathematics. Educational Studies in Mathematics, 61(1), 163-182. https://doi.org/10.1007/s10649-006-3365-z
- Rodríguez-Nieto, C., Cervantes-Barraza, J., & Font, V. (2023). Exploring mathematical connections in the context of proof and mathematical argumentation: A new proposal of networking of theories. Eurasia Journal of Mathematics, Science and Technology Education, 19(5), Article em2264. https://doi.org/10.29333/ejmste/13157
- Sarpkaya Aktaş, G., & Ünlü, M. (2017). Understanding of eight grade students about transformation geometry: Perspectives on students’ mistakes. Journal of Education and Training Studies, 5(5), 103-120. https://doi.org/10.11114/jets.v5i5.2254
- Seago, N. M., Jacobs, J. K., Driscoll, M., Matassa, M., & Callahan, M. (2013). Developing teachers’ knowledge of a transformations-based approach to geometric similarity. Mathematics Teacher Educator, 2(1), 74-102. https://doi.org/10.5951/mathteaceduc.2.1.0074
- Seago, N. M., Jacobs, J. K., Heck, D. J., Nelson, C. L., & Malzahn, K. A. (2014). Impacting teachers’ understanding of geometric similarity: Results from field testing of the learning and teaching geometry professional development materials. Professional Development in Education, 40(4), 627-653. https://doi.org/10.1080/19415257.2013.830144
- Seah, R., & Horne, M. (2020). The construction and validation of a geometric reasoning test item to support the development of learning progression. Mathematics Education Research Journal, 32(4), 607-628. https://doi.org/10.1007/s13394-019-00273-2
- Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
- Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM Mathematics Education, 48, 691-719. https://doi.org/10.1007/s11858-016-0796-6
- Stake, R. E. (2007). Investigación con estudio de casos [Case study research]. Morata
- Tachie, S. A. (2020). The challenges of South African teachers in teaching Euclidean geometry. International Journal of Learning, Teaching and Educational Research, 19(8), 297-312. https://doi.org/10.26803/ijlter.19.8.16
- Verdugo-Hernández, P., & Caviedes, S. (2024). The work of a prospective high school teacher in pre-professional training in highlighting mathematical knowledge. Eurasia Journal of Mathematics, Science and Technology Education, 20(10), Article em2525. https://doi.org/10.29333/ejmste/15473