Mental calculation achievement according to teaching approach: A study with eye-tracking from a neurocognitive approach

Malena Manchado Porras 1, Inmaculada Menacho Jiménez 1 * , Jose Carlos Piñero-Charlo 1, María del Carmen Canto-López 1
More Detail
1 Faculty of Science Education, University of Cádiz, Cádiz, SPAIN
* Corresponding Author
EUR J SCI MATH ED, Volume 11, Issue 4, pp. 690-701.
Published Online: 04 July 2023, Published: 01 October 2023
OPEN ACCESS   725 Views   417 Downloads
Download Full Text (PDF)


Currently mathematics difficulties in schools are a major problem due to several factors. Some research suggest that mathematics teaching-learning methodology could be one of the causes. As a result, alternative teaching methods to the traditional approach (ciphers-based closed algorithm [CBC]) have emerged, such as numbers-based open algorithm (ABN) method. Some research about this new approach has emerged, including neuropsychological studies. The current study aims to analyze performance and potential cognitive differences in solving a computerized task linked to eye-tracking device, comparing CBC and ABN approaches. 18 5th & 6th graders participants were evaluated through a computerized mental arithmetic task. Nine participants learned mathematics with CBC, and nine with ABN approach. Participants were distributed according to his/her mathematical performance rate in three sub-groups, three students per sub-group: low, medium, and high. The ABN method group obtained a higher overall score in the computerized task (mean [M]CBC=16.22; MABN=17.11), but the differences were not statistically significant (p=.690). However, significant differences have been found in two eye-tracking measures. ABN method group obtained a lower number of fixations average in areas of interest [AOIs]) (MCBC=5.01; MABN=3.85; p=.001), and a lower pupil diameter average in AOIs (MCBC=4.07; MABN=3.91; p=.001). This occurred regardless of the participants’ mathematical performance. These results suggest that differences between groups were not in task performance, but in cognitive effort spent in solving the task.


Manchado Porras, M., Menacho Jiménez, I., Piñero-Charlo, J. C., & Canto-López, M. D. C. (2023). Mental calculation achievement according to teaching approach: A study with eye-tracking from a neurocognitive approach. European Journal of Science and Mathematics Education, 11(4), 690-701.


  • Aguilar, M., Aragón, E., & Navarro, J. I. (2015). Las dificultades de aprendizaje de las matemáticas (DAM). Estado del arte [Mathematics learning difficulties (DAM). State of the art]. Revista de Psicología y Educación [Journal of Psychology and Education], 10(2), 13-42.
  • Al-Azawai, M. (2019). The application of eye-tracking in consumer behavior. International Journal of Engineering and Technology, 8(12), 83-86.
  • Alemdag, E., & Cagiltay, K. (2018). A systematic review of eye tracking research on multimedia learning. Computers & Education, 125, 413-428.
  • Aragón, E., Delgado, C., & Marchena, E. (2017). Diferencias de aprendizaje matemático entre los métodos de enseñanza ABN y CBC [Mathematics learning differences between ABN and CBC teaching methods]. Psychology, Society & Education, 9(1), 61-70.
  • Araya-Pizarro, S. C., & Espinoza Pastén, L. (2020). Aportes desde las neurociencias para la comprensión de los procesos de aprendizaje en los contextos educativos [Contributions from the neurosciences for the understanding of learning processes in educational contexts]. Propósitos y Representaciones [Purposes and Representations], 8(1), e312.
  • Behe, B. K., Bae, M., Huddleston, P. T., & Sage, L. (2015). The effect of involvement on visual attention and product choice. Journal of Retailing and Consumer Services, 24, 10-21.
  • Canto López, M.D.C (2017). Método de aprendizaje matemático Abierto Basado en Números (ABN) como alternativa al método Cerrado Basado en Cifras (CBC) [Mathematical learning method Open Based on Numbers (ABN) as an alternative to the Closed Based on Numbers (CBC) method] [Unpublished doctoral dissertation, Universidad de Cádiz].
  • Canto, M. D. C., Manchado, M., Piñero, J. C., Mera, C., Delgado, C., Aragón, E., & García, M. A. (2022). Description of main innovative and alternative methodologies for mathematical learning of written algorithms in primary education. Frontiers in Psychology, 13, 1-14.
  • Carter, B. T., & Luke, S. G. (2020). Best practices in eye tracking research. International Journal of Psychophysiology, 155, 49-62.
  • Carvajal, J. C., Gómez, E. L., & Barreto, I. (2021). Comportamiento visual y engaño: Una revisión sistematizada [Visual behavior and deception: A systematized review]. Anuario de Psicología [The UB Journal of Psychology], 51(2). 120-129.
  • Cerda, G., Aragón, E., Pérez, C., Navarro, J. I., & Aguilar, M. (2018). The open algorithm based on numbers (ABN) method: An effective instructional approach to domain-specific precursors of arithmetic development. Frontiers in Psychology, 9, 1811.
  • Chinn, S. (2014). The Routledge international handbook of dyscalculia and mathematical learning difficulties. Routledge.
  • Choi, J. H. (2017). Investigation of human eye pupil sizes as a measure of visual sensation in the workplace environment with a high lighting color temperature. Indoor and Built Environment, 26(4), 488-501.
  • De La Peña, C., & Bernabéu, E. (2018). Dyslexia and dyscalculia: A current systematic revision from a neurogenetics perspective. Universitas Psychologica [Psychology University], 17(3), 1-11.
  • Dehaene, S. (2019). El cerebro matemático: Como nacen, viven y a veces mueren los números en nuestra mente [The mathematical brain: How numbers are born, live and sometimes die in our minds]. Siglo XXI Editora Iberoamericana [XXI Century Ibero-American Publishing House].
  • Dewolf, T., Van Dooren, W., Hermens, F., & Verschaffel, L. (2015). Do students attend to representational illustrations of non-standard mathematical word problems, and, if so, how helpful are they? Instructional Science, 43(1), 147-171.
  • Díaz-López, M.D.P, Torres, N.D.M., & Lozano, M. C. (2017). Nuevo enfoque en la enseñanza de las matemáticas, el método ABN [New approach in teaching mathematics, the ABN method]. International Journal of Developmental and Educational Psychology, 3(1), 431-434.
  • Freudenthal, H. (1968). Why to teach mathematics so as to be useful. Educational Studies in Mathematics, 1, 3-8.
  • Gilmore, C., Göbel, S. M., & Inglis, M. (2018). An introduction to mathematical cognition. Routledge.
  • Hernández-Sabate, A., Albarracin, L., Calvo, D., & Gorgorio, N. (2016). EyeMath: Identifying mathematics problem solving processes in a RTS video game. In R. Bottino, J. Jeuring, & R. C. Veltkamp (Eds.), Games and learning alliance (pp. 50-59). Springer.
  • Hessels, R. S., & Hooge, I. T. (2019). Eye tracking in developmental cognitive neuroscience–The good, the bad and the ugly. Developmental Cognitive Neuroscience, 40, 100710.
  • Hessels, R. S., Kemner, C., van den Boomen, C., & Hooge, I. T. (2016). The area-of-interest problem in eye-tracking research: A noise-robust solution for face and sparse stimuli. Behavior Research Methods, 48, 1694-1712.
  • Hodds, M., Alcock, L., & Inglis, M. (2014). Self-explanation training improves proof comprehension. Journal for Research in Mathematics Education, 45(1), 62-101.
  • Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford University Press.
  • Hurst, M., & Cordes, S. (2016). Rational-number comparison across notation: Fractions, decimals, and whole numbers. Journal of Experimental Psychology: Human Perception and Performance, 42(2), 281-293.
  • Jaime, A., & Gutiérrez, Á. (2021). La alta capacidad matemática: Caracterización, identificación y desarrollo [High mathematical ability: Characterization, identification and development]. La Gaceta de la RSME [The RSME Gazette], 24(3), 597-621.
  • Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8(4), 441-480.
  • Klein, E., Huber, S., Nuerk, H.-C., & Moeller, K. (2014). Operational momentum affects eye fixation behavior. Quarterly Journal of Experimental Psychology, 67(8), 1614-1625.
  • Klein, P., Viiri, J., Mozaffari, S., Dengel, A., & Kuhn, J. (2018). Instruction-based clinical eye-tracking study on the visual interpretation of divergence: How do students look at vector field plots? Physical Review Physics Education Research, 14, 010116.
  • Kulke, L. V., Atkinson, J., & Braddick, O. (2016). Neural differences between covert and overt attention studied using EEG with simultaneous remote eye tracking. Frontiers in Human Neuroscience, 10, 592.
  • Lafay, A., St-Pierre, M.-C., & Macoir, J. (2019). Impairment of non-symbolic number processing in children with mathematical learning disability. Journal of Numerical Cognition, 5(1), 86-104.
  • Lahey, J. N., & Oxley, D. (2016). The power of eye tracking in economics experiments. American Economic Review, 106(5), 309-313.
  • Loos-Sant’Ana, H., & Brito, M. R. F. D. (2017). Attitude and achievement in mathematics, self-beliefs and family: A path-analysis. Bolema: Boletim de Educação Matemática [Bulletin: Mathematics Education Bulletin], 31, 590-613.
  • Luttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology Research and Behavior Management, 2018(11), 311-322.
  • Martínez, M., & Valiente, C. (2020). Actividades extraescolares y rendimiento académico: Diferencias según el género y tipo de centro [Extracurricular activities and academic performance: Differences according to gender and type of center]. MLS Educational Research, 4(1), 73-89.
  • Martínez-Montero, J. (2018). El cálculo ABN. Un enfoque diferente para el aprendizaje del cálculo y las matemáticas [The ABN calculation. A different approach to learning calculus and mathematics]. Padres y Maestros [Journal of Parents and Teachers], 376, 52-59.
  • Martínez-Montero, J., & Sánchez-Cortés, C. (2021). ¿Por qué los escolares fracasan en matemáticas? [Why do schoolchildren fail in math?] Wolters Kluwer.
  • Mato-Vázquez, D., Espiñeira, E., & López-Chao, V. A. (2017). Impacto del uso de estrategias metacognitivas en la enseñanza de las matemáticas [Impact of the use of metacognitive strategies in the teaching of mathematics]. Perfiles Educativos [Educational Profiles], 39(158), 91-111.
  • Mello, J. D., & Hernández, A. (2019). Un estudio sobre el rendimiento académico en matemáticas [A study on academic performance in mathematics]. Revista Electrónica de Investigación Educativa [Electronic Journal of Educational Research], 21(29), 1-10.
  • Michal, A. L., Uttal, D., Shah, P., & Franconeri, S. L. (2016). Visual routines for extracting magnitude relations. Psychonomic Bulletin and Review, 23(6), 1802-1809.
  • Moreira, M. A. (2017). Aprendizaje significativo como un referente para la organización de la enseñanza [Significant learning as a reference for the organization of teaching]. Archivos de Ciencias de la Educación [Archives of Educational Sciences], 11(12), e029.
  • Muldner, K., & Burleson, W. (2015). Utilizing sensor data to model students’ creativity in a digital environment. Computers in Human Behavior, 42, 127-137.
  • Noel, M.-P., & Gregoire, J. (2015). TEDI-MATH GRANDS–Test diagnostique des compétences de base en mathématiques pour les enfants du CE2 à la 5ème [TEDI-MATH GRANDS–Diagnostic test of basic math skills for children from CE2 to 5th grade]. Pearson.
  • Passolunghi, M. C., & Costa, H. M. (2016). Working memory and early numeracy training in preschool children. Child Neuropsychology, 22(1), 81-98.
  • Pérez, C., González, I., Cerda, G., & Benvenuto, G. (2018). The ABN method as an effective articulator of mathematical learning in childhood: experiences in professors of initial cycle in Chile. Journal of Educational Cultural and Psychological Studies, 17, 75-96.
  • Piñero-Charlo, J. C., Noriega Bustelo, R., Canto López, M. C., & Costado Dios, M. T. (2022). Influence of the algorithmization process on the mathematical competence: A case study of trainee teachers assessing ABN- and CBC-instructed schoolchildren by gamification. Mathematics, 10, 3021.
  • Rivera-Rivera, E. (2019). El neuroaprendizaje en la enseñanza de las matemáticas: La nueva propuesta educativa [Neuro-learning in the teaching of mathematics: The new educational proposal]. Entorno [Around], 67, 157-168.
  • Schindler, M., & Lilienthal, A. (2018). Eye-tracking for studying mathematical difficulties: Also in inclusive settings. In Proceedings of Annual Meeting of the International Group for the Psychology of Mathematics Education (pp. 115-122).
  • Schroeder, S., Hyönä, J., & Liversedge, S. P. (2015). Developmental eye-tracking research in reading: Introduction to the special issue. Journal of Cognitive Psychology, 27(5), 500-510.
  • Sillero-Rejón, C., Maynard, O., & Ibáñez-Zapata, J. A. (2019). Atención visual hacia el etiquetado de bebidas alcohólicas: Un estudio exploratorio basado en eye-tracking [Visual attention towards the labeling of alcoholic beverages: An exploratory study based on eye-tracking]. Adicciones [Addictions], 32(3), 202-207.
  • Strohmaier, A. R., MacKay, K. J., Obersteiner, A., & Reiss, K. M. (2020). Eye-tracking methodology in mathematics education research: A systematic literature review. Educational Studies in Mathematics, 104, 147-200.
  • Szczygieł, M., & Pieronkiewicz, B. (2022). Exploring the nature of math anxiety in young children: Intensity, prevalence, reasons. Mathematical Thinking and Learning, 24(3), 248-266.
  • Van der Laan, L. N., Papies, E. K., Hooge, I. T., & Smeets, P. A. (2017). Goal-directed visual attention drives health goal priming: An eye-tracking experiment. Health Psychology, 36(1), 82.
  • Vargas, M. M. (2016). Factores que determinan el rendimiento académico en matemáticas en el contexto de una universidad tecnológica: Aplicación de un modelo de ecuaciones estructurales [Factors that determine academic performance in mathematics in the context of a technological university: Application of a structural equation model]. Universitas Psychologica [Psychology University], 15(4), 1-11.
  • Wilson, A. J., Andrewes, S. G., Struthers, H., Rowe, V. M., Bogdanovic, R., & Waldie, K. E. (2015). Dyscalculia and dyslexia in adults: Cognitive bases of comorbidity. Learning and Individual Differences, 37, 118-132.
  • Zolkower, B., Bressan, A. M., Pérez, S., & Gallego, M. F. (2020). From the bottom up–Reinventing realistic mathematics education in Southern Argentina. In M. van den Heuvel-Panhuizen (Ed.), International reflections on the Netherlands didactics of mathematics (pp. 133-166). Springer.