Secondary teachers' operationalisation of mathematical literacy

Oda Heidi Bolstad 1 *
More Detail
1 Faculty of Humanities and Education, Volda University College, Volda, Norway
* Corresponding Author
EUR J SCI MATH ED, Volume 8, Issue 3, pp. 115-135.
OPEN ACCESS   2073 Views   1330 Downloads
Download Full Text (PDF)


This article reports a qualitative study of teachers’ operationalisation of mathematical literacy. A model representing the multifaceted nature of mathematical literacy is used to analyse video recordings of mathematics teaching in three grade 9 classes. Analysis indicates that teachers’ operationalisation of mathematical literacy appears to be fragmented and that teaching is focused on developing procedural fluency. Mathematical literacy was introduced in the Norwegian curriculum in 2006 and is considered a basic skill which should be developed across subjects. However, it appears that teachers still struggle to implement teaching to develop this competence.


Bolstad, O. H. (2020). Secondary teachers' operationalisation of mathematical literacy. European Journal of Science and Mathematics Education, 8(3), 115-135.


  • Aksu, G., & Güzeller, C. O. (2016). Classification of PISA 2012 mathematical literacy scores using Decision-Tree Method: Turkey sampling. Egitim ve Bilim, 41(185), 101–122.
  • Areepattamannil, S. (2014). International note: What factors are associated with reading, mathematics, and science literacy of Indian adolescents? A multilevel examination. Journal of Adolescence, 37(4), 367–372. doi:10.1016/j.adolescence.2014.02.007
  • Bakke, B., & Bakke, I. N. (2006). Grunntall 9. Matematikk for ungdomstrinnet [Digits. Mathematics for lower secondary school]. Drammen: Elektronisk undervisningsforlag AS.
  • Blikstad-Balas, M. (2017). Key challenges of using video when investigating social practices in education: contextualization, magnification, and representation. International Journal of Research & Method in Education, 40(5), 511–523. doi:10.1080/1743727X.2016.1181162
  • Blikstad-Balas, M., & Sørvik, G. O. (2015). Researching literacy in context: Using video analysis to explore school literacies. Literacy, 49(3), 140–148. doi:10.1111/lit.12037
  • Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt? Journal of mathematical modelling and application, 1(1), 45–58.
  • Blum, W., Niss, M., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14 ICMI study (pp. 3–32). New York: Springer
  • Bolstad, O. H. (2019). Teaching for mathematical literacy: School leaders' and teachers' rationales. European Journal of Science and Mathematics Education, 7(3), 93–108.
  • Breakspear, S. (2012). The policy impact of PISA: An exploration of the normative effects of international benchmarking in school system performance. In OECD Education Working Papers No. 71. Paris: OECD Publishing.
  • Bryman, A. (2008). Social research methods (3rd ed.). Oxford: Oxford University Press.
  • D’Ambrosio, U. (2007). The role of mathematics in educational systems. The International Journal on Mathematics Education, 39(1), 173–181.
  • Frankenstein, M. (2010). Developing a criticalmathematical numeracy through real real-life word problems. In U. Gellert, E. Jablonka, & C. Morgan (Eds.), Proceedings of the Sixth International Mathematics Education and Society Conference (Vol. 1, pp. 248-258). Berlin: Freie Universität Berlin.
  • Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of Mathematics Teacher Education, 11(3), 199–219. doi:10.1007/s10857-007-9070-8
  • Geiger, V., Forgasz, H., & Goos, M. (2015). A critical orientation to numeracy across the curriculum. ZDM, 47(4), 611–624. doi:10.1007/s11858-014-0648-1
  • Geiger, V., Goos, M., & Dole, S. (2014). Curriculum intent, teacher professional development and student learning in numeracy. In Y. Li & G. Lappan (Eds.), Mathematics curriculum in school education (pp. 473–492). Dordrecht: Springer.
  • Geiger, V., Goos, M., & Forgasz, H. (2015). A rich interpretation of numeracy for the 21st century: A survey of the state of the field. ZDM, 47(4), 531–548. doi:10.1007/s11858-015-0708-1
  • Genc, M., & Erbas, A. K. (2019). Secondary mathematics teachers’ conceptions of mathematical literacy. International Journal of Education in Mathematics, Science and Technology, 7(3), 222–237.
  • Goos, M., Geiger, V., & Dole, S. (2010). Auditing the numeracy demands of the middle years curriculum. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Shaping the future of mathematics education. Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia (pp. 210–217). Freemantle: MERGA.
  • Goos, M., Geiger, V., & Dole, S. (2014). Transforming professional practice in numeracy teaching. In Y. Li, E. A. Silver, & S. Li (Eds.), Transforming mathematics instruction: Multiple approaches and practices (pp. 81–102). Dordrecht: Springer International Publishing.
  • Haara, F. O., Bolstad, O. H., & Jenssen, E. S. (2017). Research on mathematical literacy in schools - Aim, approach and attention. European Journal of Science and Mathematics Education, 5(3), 285–313.
  • Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1–27). Hillsdale: Erlbaum.
  • Hjardar, E., & Pedersen, J.-E. (2014a). Faktor 9. Grunnbok. Matematikk for ungdomstrinnet [Factor 9. Mathematics for lower secondary school]. Oslo: Cappelen Damm AS.
  • Hjardar, E., & Pedersen, J.-E. (2014b). Faktor 9. Oppgåvebok. Matematikk for ungdomstrinnet [Factor 9. Work book. Mathematics for lower secondary school]. Oslo: Cappelen Damm AS.
  • Höfer, T., & Beckmann, A. (2009). Supporting mathematical literacy: Examples from a cross-curricular project. ZDM, 41(1-2), 223–230. doi:10.1007/s11858-008-0117-9
  • İş Güzel, Ç., & Berberoǧlu, G. (2010). Students' affective characteristics and their relation to mathematical literacy measures in the Programme for International Student Assessment (PISA) 2003. Egitim Arastirmalari - Eurasian Journal of Educational Research(40), 93–113.
  • Jablonka, E. (2003). Mathematical literacy. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second International Handbook of Mathematics Education (pp. 75–102). Dordrecht: Kluwer Academic Publishers.
  • Jones, S., & Tanner, H. (2008). Reflective discourse and the effective teaching of numeracy. Paper presented at the Proceedings of the Joint Meeting of PME 32 and PME-NA XXX, Morelia, Mexico.
  • Kaiser, G., & Willander, T. (2005). Development of mathematical literacy: Results of an empirical study. Teaching Mathematics and its Applications, 24(2-3), 48–60. doi:10.1093/teamat/hri016
  • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington: National Academy Press.
  • Maltese, A. V., Danish, J. A., Bouldin, R. M., Harsh, J. A., & Bryan, B. (2015). What are students doing during lecture? Evidence from new technologies to capture student activity. International Journal of Research & Method in Education, 39(2), 208–226. doi:10.1080/1743727X.2015.1041492
  • Niss, M., & Jablonka, E. (2014). Mathematical literacy. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 391–396). Dordrecht: Springer.
  • Nordtvedt, G. A. (2013). Matematikk i PISA - matematikkdidaktiske perspektiver. In M. Kjærnsli & R. V. Olsen (Eds.), Fortsatt en vei å gå: Norske elevers kompetanse i matematikk, naturfag og lesing i PISA 2012 (pp. 43–65). Oslo: Universitetsforl.
  • Noss, R., Hoyles, C., & Pozzi, S. (2000). Working knowledge: Mathematics in use. In A. Bessot & J. Ridgway (Eds.), Education for mathematics in the workplace (pp. 17–35). Dordrecht: Kluwer.
  • OECD. (2012). PISA 2012 Assessment and analytical framework. Mathematics, reading, science, problem solving and financial literacy. Retrieved from
  • Popovic, G., & Lederman, J. S. (2015). Implications of informal education experiences for mathematics teachers' ability to make connections beyond formal classroom. School Science and Mathematics, 115(3), 129–140. doi:10.1111/ssm.12114
  • Roth, W.-M., & Radford, L. (2011). Cultural-historical perspective on mathematics teaching and learning. Rotterdam: Springer.
  • Schoenfeld, A. H. (2001). Reflections on an impoverished education. In L. A. Steen (Ed.), Mathematics and democracy: The case for quantitative literacy (pp. 49–54). Princeton: The National Council on Education and the Diciplines.
  • Sfard, A. (2014). Why mathematics? What mathematics? In M. Pitici (Ed.), The best writing on mathematics 2013. Princeton, NJ: Princeton University Press.
  • Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20–26.
  • Skovsmose, O. (2011). An Invitation to Critical Mathematics Education. Rotterdam: SensePublishers.
  • Steen, L. A. (Ed.) (2001). Mathematics and democracy: The case for quantitative literacy. Princeton: The National Council on Education and the Diciplines.
  • Steen, L. A., Turner, R., & Burkhardt, H. (2007). Developing mathematical literacy. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education: The 14th ICMI Study (pp. 285–294). New York: Springer.
  • Tanner, H., & Jones, S. (2013). Developing Mathematical Literacy in Welsh Secondary Schools. The Welsh Journal of Education, 16(1), 21–36.
  • The Norwegian Directorate for Education and Training. (2012). Framework for basic skills. Oslo Retrieved from
  • The Norwegian Directorate for Education and Training. (2013). Curriculum for the common core subject of mathematics. Oslo: Ministry of Education and Research Retrieved from
  • Tzohar-Rozen, M., & Kramarski, B. (2013). How does an affective self-regulation program promote mathematical literacy in young students? Hellenic Journal of Psychology, 10(3), 211–234.
  • Vos, P. (2018). “How real people really need mathematics in the real world” - Authenticity in mathematics education. Education Sciences, 8(4), 195–208.
  • Wedege, T. (1999). To know or not to know: Mathematics, that is a question of context. Educational Studies in Mathematics, 39(1/3), 205–227.