The problem of distinguishing multiplicative from additive reasoning in primary school classroom context

Odd Tore Kaufmann 1 *
More Detail
1 Department of teacher education, Østfold University College, Halden, Norway
* Corresponding Author
EUR J SCI MATH ED, Volume 6, Issue 3, pp. 100-112. https://doi.org/10.30935/scimath/9526
OPEN ACCESS   630 Views   519 Downloads
Download Full Text (PDF)

ABSTRACT

This article investigates how students in third grade learn to reason on multiplication when they first encounter that concept in the classroom context. By analysing the data from 24 classrooms focused on teaching and learning multiplication, the article aims at contributing to the research and conceptualisations about how students learn to distinguish multiplicative from additive reasoning in a primary school. A central feature is the strong emphasis students have on addition when they work with multiplication. This emphasis on addition causes tensions in the discussions between the teacher and students. Results are discussed in relation to previous studies of students’ multiplicative reasoning and implications for practice are elaborated upon.

CITATION

Kaufmann, O. T. (2018). The problem of distinguishing multiplicative from additive reasoning in primary school classroom context. European Journal of Science and Mathematics Education, 6(3), 100-112. https://doi.org/10.30935/scimath/9526

REFERENCES

  • Alvesson, M., & Sköldberg, K. (2009). Reflexive methodology : new vistas for qualitative research. London: Sage.
  • Arzarello, F., Robutti, O., & Bazzini, L. (2005). Acting Is Learning: Focus on the Construction of Mathematical Concepts. Cambridge Journal of Education, 35(1), 55-67.
  • Bryman, A. (2012). Social research methods (4th ed.). Oxford: Oxford University Press.
  • Carr, W., & Kemmis, S. (1986). Becoming Critical:Education, Knowledge and Action Research. London: London, GBR: Falmer Press, Limited UK.
  • Clark, F. B., & Kamii, C. (1996). Identification of multiplicative thinking in children in grades 1-5. Journal for Research in Mathematics Education, 27 (1), 41-51. doi: 10.2307/749196
  • Emanuelsson, J., & Sahlström, F. (2008). The price of participation ; teacher control versus student participation in classroom interaction. Scandinavian Journal of Educational Research, 52, 205-223.
  • English, L. D., & Halford, G. S. (1995). Mathematics education : models and processes. Mahwah, N.J: Lawrence Erlbaum Associates
  • Fernández, C., Llinares, S., Van Dooren, W., De Bock, D., & Verschaffel, L. (2012). The development of students’ use of additive and proportional methods along primary and secondary school. European journal of psychology of education, 27(3), 421-438. doi:10.1007/s10212-011-0087-0
  • Fischbein, E., Deir, M., Nello, M. & Marino, M. (1985). The Role of Implicit Models in Solving Verbal Problems in Multiplication and Division. Journal for Research in Mathematics Education, 16(1), 3-17.
  • Greer, B. (1992). Multiplication and division as models of situations. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 276 - 295). Charlotte: Charlotte, NC, USA: Information Age Publishing.
  • Kaufmann, O. T. (2010). The students’ first encounter with multiplication : a sociocultural approach to appropriation of multiplication in the classroom. University of Agder, Kristiansand.
  • Knoblauch, H. (2005). Focused Ethnography. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 6(3). Retrieved from http://www.qualitative-research.net/index.php/fqs/article/view/20/43
  • Knoblauch H. 2006. Videography. Focused Ethnography and Video Analysis. In Video-Analysis. Methodology and Methods, edited by Knoblauch H., Schnettler B., Raab J., Soeffner H.-G., 69–84. Frankfurt: Peter Lang.
  • Larsson, K. (2016). Finding Erik and Alva: uncovering students who reason additively when multiplying. Nordisk Matematikkdidaktikk, 21(2), 69-88.
  • Lesh, R., & Sriraman, B. (2010). Re-conceptualizing Mathematics Education as a Design Science. In B. Sriraman & L. D. English (Eds.), Advances in mathematics education (pp. 123-146). Berlin: Springer.
  • Lo, J.-J., Grant, T., & Flowers, J. (2008). Challenges in deepening prospective teachers' understanding of multiplication through justification. Journal of Mathematics Teacher Education, 11(1), 5-22. doi:10.1007/s10857-007-9056-6
  • Ludvigsen, S., Nortvedt, G. A., Pettersen, A., Pettersson, A., Sollerman, S., Ólafsson, R. F., . . Braeken, J. (2016). Northern Lights on PISA and TALIS. Copenhagen: Nordisk Ministerråd.
  • Moschkovich, J. N. (2004). Appropriating Mathematical Practices: A Case Study of Learning to Use and Explore Functions Through Interaction with a Tutor. Educational Studies in Mathematics, 55(1-3), 49-80.
  • Mulligan, J. (1992). Children's Solutions to Multiplication and Division Word Problems: A Longitudinal Study. Mathematics Education Research Journal, 4(1), 24-41.
  • Mulligan, J., & Mitchelmore, M. (1997). Young Children's Intuitive Models of Multiplication and Division. Journal for Research in Mathematics Education, 28(3), 309-330.
  • Rogoff, B. (1990). Apprenticeship in thinking : cognitive development in social context. New York: Oxford University Press.
  • Ryve, A., Larsson, M., & Nilsson, P. (2013). Analyzing Content and Participation in Classroom Discourse: Dimensions of
  • Variation, Mediating Tools, and Conceptual Accountability. Scandinavian Journal of Educational Research, 57(1), 101-114. doi: 10.1080/00313831.2011.628689
  • Schwartz, J. (1988). Intensive quantity and referent transforming arithmetic operations. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (pp. 41-52). Hillsdale, N.J.:Lawrence Erlbaum Associates.
  • Sherin, B., & Fuson, K. (2005). Multiplication Strategies and the Appropriation of Computational Resources. Journal for Research in Mathematics Education, 36(4), 347-395.
  • Streitlien, Å. (2009). Hvem får ordet og hvem har svaret? : om elevmedvirkning i matematikkundervisningen. Oslo: Universitetsforlaget.
  • Säljö, R. (2005). Lärande och kulturella redskap : om lärprocesser och det kollektiva minnet. Stockholm: Norstedts akademiska förlag.
  • Tzur, R., Johnson, H. L., McClintock, E., Kenney, R. H., Xin, Y. P., Si, L., . . . Jin, X. (2013). Distinguishing Schemes and Tasks in Children's Development of Multiplicative Reasoning. PNA, 7(3), 85-101.
  • Van Dooren, W., De Bock, D. & Verschaffel, L. (2010). From addition to multiplication… and back: The development of students’ additive and multiplicative reasoning skills. Cognition and Instruction, 28(3), 360-381. doi: 10.1080/07370008.2010.488306
  • Verschaffel, L., Greer, B., & DeCorte, E. (2007). Second handbook of research on mathematics teaching and learning. In F. K. Lester (Ed.), Whole number concepts and operations (Vol. 1, pp. 557 - 628). Charlotte, N.C: Information Age.
  • Vygotsky, L. S. (1978). Mind in society : the development of higher psychological processes. Cambridge, Mass: Harvard University Press.
  • Wertsch, J. V. (1998). Mind as action. New York: Oxford University Press.